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I. Basic notions for semisimple Lie algebras
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Complex semisimple Lie algebras

• g: complex semsimple Lie algebras
• There is a 1-1 correspondence:

isom. classes of cplx simple Lie alg↔ connected root systems

• Fix a Cartan subalgebra h: a maximal toral in g
• Roots are given by eigenfunctions α : h→ C: for some

x ∈ g \ {0},
h.x = α(h)x ∀h ∈ h

• Cartan decomposition:

g = h⊕
⊕
α∈Φ

gα,

where
gα = {x ∈ g : h.x = α(h)x ∀x ∈ h} .
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Root systems and Weyl groups

• Fix a Borel subalgebra b, equivalently fix a set Φ+ of
positive roots
• Φ+ determines a set ∆ of simple roots
• A reflection sα associated a root α satisfies:

sα(β) = β − 2
〈α, β〉
〈α, α〉

α

(for some inner form 〈, 〉)
• Embed reflections into O(V ), where V = R⊗Z Φ

• W is the Weyl group generated by the reflections in O(V )

• Example: S2 = {1, s},

S3 = {1, s1, s2, s1s2, s2s1, s1s2s1}
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Universal enveloping algebra

• Recall that the tensor algebra T (A) is defined as: ⊕∞i=0A⊗i

with product A⊗i × A⊗j → A⊗(i+j)

(x1 ⊗ . . .⊗ xi)(y1 ⊗ . . .⊗ yj) = (x1 ⊗ . . .⊗ xi ⊗ y1 ⊗ . . .⊗ yj)

• The universal enveloping algebra U(g) is defined as:

U(g) = T (g)/〈x ⊗ y − y ⊗ x − [x , y ] : x , y ∈ g〉

• Triangular decomposition: g = u− ⊕ h⊕ u, where

u− = ⊕α∈Φ−gα, u = ⊕α∈Φgα

• PBW basis theorem: U(g) admits a basis:{
Y r1
α1
. . .Y rm

αmHs1
1 . . .Hsl

l X t1
α1
. . .X tm

αm

}
ri ,sj ,tk∈Z≥0

,

where l = rank h and {αi}mi=1 are all roots.
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Weight space

• h∗: linear functionals on h

• For λ ∈ h∗ and a g-module M, define

Mλ = {x ∈ M : h.x = λ(h)x} .

• In general, Mλ is not necessarily semisimple.
• For example, h = C.h and

h =

(
0 1

0

)
act on M = C2
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II. Categroy O: properties and modules
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Category O

• Correspondence U(g)-modules and g-modules (via the
embedding g 7→ U(g))

Definition
Category O is defined as the full subcategory of U(g)-modules
such that
• M is finitely-generated U(g)-modules
• h acts semisimply i.e. M = ⊕λ∈h∗Mλ

• M is locally n-finite

The most basic examples of objects of Category O are
finite-dimensional modules. (First and third bullets are easier,
and we shall see the second one from Verma modules)
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Further properties of Category O

Proposition
Any module M in Category O satisfies:
• All weight spaces of M are finite-dimensional
• Let

Λ =
∑
α∈∆

Z≥0α.

There exists a finite set {λ1, . . . , λk} of weights such that
any weight in M takes the form:

λi − λ

for λ ∈ Λ.
• For any M ∈ O and a finite-dimensional L ∈ O, M ⊗ L ∈ O.
• M is a finitely-generated U(n−)-module.
• For any v ∈ M, Z (g).v is finite-dimensional.
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Further properties of Category O

Proposition
• Category O is Noetherian.
• Category O is abelian.
• Category O is Artinian i.e. any module is of finite length

• Noetherian: Follows from U(g) is noetherian ring, and first
axiom of Cat O
• Abelian: Check quotients and submodules. e.g.

Submodules are U(g)-finitely generated, and last two
axioms easier
• Artinian: Need a bit more, and discuss alter
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Example on sl(2,C)

Recall that sl(2,C) =

{(
a b
c d

)
: a + d = 0

}
. It has a basis

X =

(
0 1
0 0

)
, H =

(
1 0
0 −1

)
, Y =

(
0 0
1 0

)
satisfying commutation relations:

[H,X ] = 2X , [H,Y ] = −2Y , [X ,Y ] = H

For n ∈ Z≥0, define M to be a module of basis {vi}i≥0 with
action:

H.vi = (n − 2i)vi

X .vi = (n − i + 1)vi−1

Y .vi = (i + 1)vi+1
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Modules which is not in Category O

• U(g) as U(g)-module (not n-finite)
• U(g)⊗U(n) C (not h-semisimple)
• Product of two infinite-dimensional modules in O
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Highest weight modules

We now introduce an important class of modules in Cat O.

Definition
A g-module M is said to be of highest weight if
• there exists v ∈ M such that n.v = 0;
• M = U(g).v .

We shall call v to be a maximal vector and the corresponding
weight to be the highest weight.

Let M be a highest weight module with highest weight λ.
• Using PBW basis, any weight takes the form λ−

∑
nαα,

where nα ≥ 0.
• The highest weight and maximal vector are unique.
• A highest weight module is indecomposable.
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Verma modules

Fix a weight λ ∈ h∗. Let vλ be the λ-weight vector of h and
extend to b-module via n acting trivially. Define Verma module
to be

M(λ) = U(g)⊗U(b) Cvλ.

Indeed, for any highest weight module M, we find a surjection:

M(λ)→ M

determined by sending vλ to the highest weight.

Proposition

Any Verma module has a unique quotient, denoted L(λ).

Proof.
Sum of proper submodules does not contain the max.
vector.
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Artinian property

Recall that we have the following:

Theorem
Category O is Artinian.

The idea of the proof is as follows:
• Locally n-finite property⇒ surjections of finite sum of

Verma mods to a module in O
• Reduces to check finite length for Verma mdoules
• Any two simple modules L(λ1) and L(λ2) have non-trivial

extension only if λ1 and λ2 are linked i.e.

λ1 = w · λ2 := w(λ2 + ρ)− ρ

(ρ = 1
2
∑

α∈Φ+ α)
• Finite linked conjugacy classes⇒ Finite len. of Verma

mods
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Simple module

• For any simple module L in O, it has a maximal vector by
axiom of O. Such maximal vector generates L and so L is a
highest weight module.
• For such maximal vector v with weight λ, define

M(λ)→ L

Thus any simple module L is the simple quotient L(λ) of
some M(λ). Hence we obtain a classification of simple
modules in O.
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some M(λ). Hence we obtain a classification of simple
modules in O.
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Duals in Category O

• There is an anit-involution τ : g→ g such that

τ(h) = h, τ(gα) = g−α

• For M ∈ O, define M∨ as:

M∨ = ⊕λM∨λ

with action given by:

(x .f )(v) = f (τ(x).v).

• ∨ is a contravariant exact functor
• e.g. M(λ)∨ has unique submodule
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III. Homological properties
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Some homological properties of Category O

• The ordering on weights is given by:

λ ≤ µ ⇔ µ− λ ∈
∑
α∈∆

Z≥0α

• If λ ≤ µ, then
ExtO(M(µ),L(λ)) = 0

• ExtO(L(λ),L(λ)) = 0
• The above implies that, for any λ, µ,

ExtiO(M(λ),M(µ)) = 0
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Projective objects

• Recall that an object P is said to be projective if the functor
HomO(P, .) is right exact.
• For each simple object L(λ), ∃ a projective cover P(λ) for

L(λ) i.e. surjection from P(λ) to L(λ) and there is no proper
projective submodule of P(λ) mapping onto L(λ)

• Any projective object is a finite sum of projective covers
• Why P(λ) exists?
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Examples of projective objects

• In sl(2,C) case, we consider simple modules with the
’infinitesimal character’ 0: L(0) and L(−ρ)

• The corresponding projective covers have structure:

P(0) :
L(0)

L(−ρ)
P(−ρ) :

L(−ρ)
L(0)

L(−ρ)

Kei Yuen Chan Category O



Examples of projective objects

• In sl(2,C) case, we consider simple modules with the
’infinitesimal character’ 0: L(0) and L(−ρ)

• The corresponding projective covers have structure:

P(0) :
L(0)

L(−ρ)
P(−ρ) :

L(−ρ)
L(0)

L(−ρ)

Kei Yuen Chan Category O



Construction of projective objects

• If λ satisfies 〈λ+ ρ, α∨〉 ≥ 0, then M(λ) is projective.
• Now for arbitrary weight λ, we find a sufficiently large n

such that µ = λ+ nρ is dominant.
• The module M(µ)⊗ L(nρ) is projective.
• There is a general theory to decompose M(µ)⊗ L(nρ). In

particular, M(λ) appears once.
• ⇒We obtain a projective object P(λ).
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BGG reciprocity

One important result that relates projective objects, simple
objects and Verma modules is the BGG reciprocity:
• By previous construction, projective object admits a

filtration with successive subquotients are isomorphic to
Verma mdoules. We call standard filtration.
• The number of times that M(µ) appears in the filtration of

P(λ) is independent of the choice of the filtration.
• Denote the number by (P(λ) : M(µ)).

Theorem (BGG reciprocity)
Let λ, µ ∈ h∗. Then

(P(λ) : M(µ)) = [M(µ) : L(λ)]

Key of proof: (P(λ) : M(µ)) = HomO(P(λ),M(µ)∨)
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Projective modules: antidominant case

Following from the projective object M(−ρ)⊗M(λ+ ρ), we
have:

Proposition
Let λ be an antidominant weight. Then

(P(λ) : M(µ)) = 1

for any µ with w · µ = λ for some w ∈W .

As a consequence of BGG reciprocity, we als have that

[M(µ) : L(λ)] = 1.

Indeed, L(λ) appears in the submodule M(µ). We will come
back in the last lecture.
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