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I. Basic notions for semisimple Lie algebras
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Complex semisimple Lie algebras

® g: complex semsimple Lie algebras
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Complex semisimple Lie algebras

® g: complex semsimple Lie algebras
e There is a 1-1 correspondence:

isom. classes of cplx sw Lie alg <> connected root systems
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Complex semisimple Lie algebras

® g: complex semsimple Lie algebras
e There is a 1-1 correspondence:

isom. classes of cplx simple Lie alg <+ connected root systems
> Al ot A
* Fix a Cartan subalgebra h: a maximal toral in g 3‘*"*"“\"(“'
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Complex semisimple Lie algebras

® g: complex semsimple Lie algebras
e There is a 1-1 correspondence:

isom. classes of cplx simple Lie alg <+ connected root systems

¢ Fix a Cartan subalgebra h: a maximal toral in g
¢ Roots are given by eigenfunctions « : h — C: for some

x € g\ {0},
hx =a(h)x Vheh

Kei Yuen Chan Category O



Complex semisimple Lie algebras

® g: complex semsimple Lie algebras
There is a 1-1 correspondence:

isom. classes of cplx simple Lie alg <+ connected root systems

Fix a Cartan subalgebra h: a maximal toral in g
Roots are given by eigenfunctions « : h — C: for some
x € g\ {0},

hx =a(h)x Vheh

Cartan decomposition:

g="h o)
ﬁi‘% | e

where 4
go={x€g:hx=a(h)x Vxeh}.
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Root systems and Weyl groups

X

v
e Fix a Borel subalgebra b, equivalently fix a set * of
positive roots
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Root systems and Weyl groups

e Fix a Borel subalgebra b, equivalently fix a set * of
positive roots

e T determines a set A of simple roots
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Root systems and Weyl groups

e Fix a Borel subalgebra b, equivalently fix a set * of
positive roots

e T determines a set A of simple roots

e A reflection s, associated a root « satisfies:

(for some inner form (,))
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Root systems and Weyl groups

e Fix a Borel subalgebra b, equivalently fix a set * of
positive roots

e T determines a set A of simple roots

e A reflection s, associated a root « satisfies:

(0.8).,
()

Sa(ﬂ) =p-2

(for some inner form (,))
e Embed reflections into O(V), where V =R @z ¢
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Root systems and Weyl groups

e Fix a Borel subalgebra b, equivalently fix a set * of
positive roots

e T determines a set A of simple roots

e A reflection s, associated a root « satisfies:

(o, B)

Sa(ﬂ) =p - 2<a’a>0¢

(for some inner form (,))
¢ Embed reflections into O(V), where V =R ®z ¢
e W is the Weyl group generated by the reflections in O(V)

e Example: S, = {1, s}, 44
lsb %_'QSZ { } _é\o_/E
N A S3 = {1,~?1,Sf,s132,32317513231}

x ¢ s.ﬁe
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Universal enveloping algebra/?'g

¢ Recall that the tensor algebra T(A) is defined as: @,-OioA@”'
with product AR AR s AR(I+))

—

XK.V ®..9))=X®..0XQ)1®...Q0Y)
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Universal enveloping algebra

¢ Recall that the tensor algebra T(A) is defined as: @;’30@
with product A®" x A% — A®(+) A ;J\QI

XK.V ®..9))=X®..0XQ)1®...Q0Y)

¢ The universal enveloping algebra U(g) is defined as:
"3—50('& =T(g)/(x@y-—y@x—[x,y]: X,y €9)

v\ '
thm\\ =4 Yy “Myen)
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Universal enveloping algebra

* Recall that the tensor algebra T(A) is defined as: &%, A%’
with product AR AR s AR(I+))

XK.V ®..9))=X®..0XQ)1®...Q0Y)

¢ The universal enveloping algebra U(g) is defined as:

Ulg) = T(a)/(x@y —yex—[xyl: X,y €g)

e Triangular decomposition: g = u~ @@ u, where

U =OBpco-0a, U= Dacoba

D -
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Universal enveloping algebra

e Recall that the tensor algebra T(A) is defined as: &5°,A%'
with product AR AR s AR(I+))

XK.V ®..9))=X®..0XQ)1®...Q0Y)

* The universal enveloping algebra U(g) is defined as:

Litg) < T(@)/[x 5y —y & x CoyDxy gl
Fg r\i\\?-l(co-u_ S5 Uy ~

gular decomposmon g=u Ohou where 9§ ")

¢ PBW basis theorem: U(g) admits a basis:
.,(- e {YCZ...Y;';Hf‘...H,s’Xj;...){t’"

Posrha
0 where / = rank b and\{ o };_Nare aIKoots.
Kei Yuen Ch Category O

= Docd-0a; U= Daco




e h*: linear functionals on b

For A € h* and a g-module M, define
My ={x e M: hx = Xh)x}

In general, M, is not necessarily semisimple.
For example, h = C.h and

h= (O ;) acton M = C?

«a0)>» «F»r « =)»




Weight space

e h*: linear functionals on h
* For A € h* and a g-module M, define
u.c'.\\,d S My ={xeM:hx=Xxh)x}.

b l’\,\to, ‘V\)\ 1S C«-,Q"L‘A spr-+ &
A s &
wl.'\\u
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Weight space

e h*: linear functionals on h
e For A € h* and a , define

My ={xe M:hx=X\h)x}.

¢ In general, M, is not necessarily semisimple.
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Weight space

e h*: linear functionals on h
e For )\ € h* and a g-module M, define

My ={xe M:hx=X\h)x}.

¢ In general, M, is not necessarily semisimple.

. Forexample@:Chand g b M
sy

o‘\wJ’} I h=<o éf acton M = C?
y\g@g( én !«]"NJ\
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[l. Categroy O: properties and modules

DA



Category O

SV

° Correspondence(Ui;;-modules7and g-modules (via the
embedding g — U(g q ) ~Wwod M
" Xomzi X Y

3
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Category O

==

e Correspondence U(g)-modules and g-modules (via the

embedding g — U(g)) ?ﬁ-,l—
Definition H=n 8 G M
Category O is defined as the full subcategory of U(g)-module?\
such that
e M is finitely-generated U(g)-modules
® b acts semisimply i.,e. M = @ycp- My
A\ o — “ Amin .V <o
M is locally fyfinite v € mY\, 2
) ) fe o4 4 el
M
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Category O

e Correspondence U(g)-modules and g-modules (via the
embedding g — U(g))

s Oy o
Definition GA,‘ . \~ L‘ , ,‘.
Category O is defined as the full subcategory of U(g)-modules
such that
q - ( '\ e\,w‘h
e M is finitely-generated U(g)-modules Uls
® b acts semisimply i.e. M = @ycp- My

o Mislocally e~ Uln) - §irly =

The most basic examples of objects of Category O are

finite-dimensional modules. (First and third bullets are easier,

and we shall see the second one rom Verma mod es)
Kiks
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Further properties of Category O

Proposition
Any module M in Category O sat

9«':}&@}&\

o All wei es of M are fi

isfies:
nite-dimensional

OK o~

GO’.'A )

\\
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Further properties of Category O

iroposﬂor M in Cat O satisfi —r it se o
ny module In Lategor satlsries:
y gory ﬁ[MV\') .S ,('?\1‘

¢ All weight spaces of M are finite-dimensiona

o Let C
b
a MQJ

There exists a finite set {A1, ..., \¢} of weights such that

. . ﬁ_—_——
any weight in M takes the form: \)@ y~— J\.\s

Ai — A
for A € A. jvks\ [ L\a U(“—)
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Further properties of Category O

Proposition
Any module M in Category O satisfies:
¢ All weight spaces of M are finite-dimensional

o |et
/\ = Z Z20a~

aceA

There exists a finite set {\1, ..., A} of weights such that
any weight in M takes the form:

=

for A € A.
e Forany M € O and a finite-dimensional L€ O, M® L € O.
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Further properties of Category O

Proposition
Any module M in Category O satisfies:
¢ All weight spaces of M are finite-dimensional

° Let
/\ = Z ZzoOé.
aEA

There exists a finite set {\1, ..., A} of weights such that
any weight in M takes the form:

A=A

o, L v\s’\ {'u—& -t'( Ceg

for A € A.
e Forany M € O and a finite-dimensional L € O, M&Le O.

e Mis a finitely-generated U(n~)-module. & o/u~{ ¥ )
Wt R 2

L4

A feele - e
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Further properties of Category O

Proposition
Any module M in Category O satisfies:
¢ All weight spaces of M are finite-dimensional

o |et
/\ = Z ZzoOé.

aceA

There exists a finite set {\1, ..., A} of weights such that
any weight in M takes the form:

Ai— A

for A € A.
e Forany M € O and a finite-dimensional L€ O, M® L € O.
ComkQrs) M is a finitely-generated U(n~)-module.

\
u(- U(Gﬁ Forany v e M, Z(g).v is finite-dimensional. W
0
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Further properties of Category O

Proposition
e Category O is Noetherian.
e Category O is abelian.
e Category O is Artinian i.e. any module is of finite length
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Further properties of Category O

Proposition

Category O is Noetherian.
Category O is abelian.
Category O is Artinian i.e. any module is of finite length

Noetherian: Follows from U(g) is noetherian ring, and first
axiom of Cat O
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Further properties of Category O

Proposition
e Category O is Noetherian.
e Category O is abelian.
e Category O is Artinian i.e. any module is of finite length

* Noetherian: Follows from U(g) is noetherian ring, and first
axiom of Cat O ~
T . -(\'._1.-\}\1
¢ Abelian: Check quotients and submodules. e.g. \
Submodules are U(g)-finitely generated, and last two A o
axioms easier
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Further properties of Category O

Proposition

Category O is Noetherian.
Category O is abelian.
Category O is Artinian i.e. any module is of finite length

Noetherian: Follows from U(g) is noetherian ring, and first
axiom of Cat O

Abelian: Check quotients and submodules. e.g.
Submodules are U(g)-finitely generated, and last two
axioms easier

Artinian: Need a bit more, and discuss alter
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Example on sl(2, C)

Recall that s1(2,C) = {<i Z) ra+d= 0}. It has a basis
0 1 10 00
XZ(o o>’H:<o —1>’Y:<1 o>
— — W) e

satisfying commutation relations:

:.'--\'
e '\!\'_& [H,X]=2X, [H Y]=-2Y, [x,s@

For n € Z>,, define M to be a module of basis {Vv;};-q Wit
action:

R S RSV AL
we €Y = Hvi=(n-2i)y " Vs \J\UJJ
'54\3‘- Xvi=(n—i+viy ¥ X x X

i Y-Vi=(i+H)ﬁé‘1‘ -6 =% ~1 9
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Modules which is not in Category O

Lol
e U(g) as U(g)-module (not Finite) C —Arid \hlt\

/—-.0 U(g) ®y(w) C (not h-semisimple) o~ A
e Product of two infinite-dimensional modules in O

U(‘b\ N Y N 4\,, G ST \J(%\ w V('i\ﬂg

ey ‘_\\0\
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Highest weight modules

We now introduce an important class of modules in Cat O.

Definition
A g-module M is said to be of highest weight if
e there exists v € M such that n.v = 0;
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Highest weight modules

We now introduce an important class of modules in Cat O.
Definition
A g-module M is said to be of highest weight if

e there exists v € M such that n.v = 0;

* M= U(g).v.
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Highest weight modules

We now introduce an important class of modules in Cat O.
Definition
A g-module M is Sii{j to gce\‘c_)f highest weight if
- o~ o
Dush %There exists v'e M such that n.v = 0:

N = U(g).f=k\n_-\v(\)ua\ U gUE) 9V

\/
We s all v to be a maximal vector and the corresponding
weight to be the highest weight.
(VN \

Let M be a highest weight module with highest weight . —d
¢ Using PBW basis, any weight takes the form A — > n,«, v

where nm.—/'
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Highest weight modules

We now introduce an important class of modules in Cat O.
Definition
A g-module M is said to be of highest weight if

e there exists v € M such that n.v = 0;

e M= U(g).v.

We shall call v to be a maximal vector and the corresponding
weight to be the highest weight.

Let M be a highest weight module with highest weight .

¢ Using PBW basis, any weight takes the form A — > n,«,
where n, > 0.

* The highest weight and maximal vector are unique.
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Highest weight modules

We now introduce an important class of modules in Cat O.
Definition
A g-module M is said to be of highest weight if

e there exists v € M such that n.v = 0;

* M= U(g).v.

We shall call v to be a maximal vector and the corresponding
weight to be the highest weight.

Let M be a highest weight module with highest weight .

e Using PBW basis, any weight takes the form \ — a,
where n, > 0. ~
The highest weight and maximal vector are unique.

¢ A highest weight module is indecomposable. M= %@i}k
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Verma modules

Fix a weight A € h*. Let v, be the A-weight vector of h and
extend to b-module via n acting trivially. Define Verma module
e ——————————

to be 0 ‘AR
2‘- DZQ‘}C( M) U \{;}s(« o\

®@y(p) CVa.
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Verma modules

Fix a weight A € h*. Let v, be the A-weight vector of h and
extend to b-module via n acting trivially. Define Verma module

to be
M(X) = U(g) ®uy(s) Cva.

Indeed, for any highest weight module M, we find a surjection:
lG— MM(

O\
V\\ 1{:;\“&1"4 GM()%M"‘M‘V\\ Vi

k.
determlned by sending vA to the highest welgﬁ‘f e -d ‘ Y
i
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Verma modules

Fix a weight A € h*. Let v, be the A-weight vector of h and
extend to b-module via n acting trivially. Define Verma module
to be

M) = U(g) @ue) Cva. U ) SAV
Indeed, for any highest weight module M, we find a surjection:

uzusus pusle

M(A) — M
6\.<w~

determined by sending v, to the highest weight.
Proposition

Any Verma module has a unique quotient, denoted L()).

—_— y

Proof.

Sum of proper@does not contain the max.
vector. Ol
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Recall that we have the following:

Category O is Artinian. '

The idea of the proof is as follows:

Locally n-finite property = surjections of finite sum of
Verma mods to a module in O

Reduces to check finite length for Verma mdoules

Any two simple modules L(\{) and L(\2) have non-trivial
extension only if Ay and )\, are linked i.e.

M=w-d:=w+p)—0p

(0 =3 acor )
Finite linked conjugacy classes =- Finite len. of Verma
mods

«4O0>» «F»r» «=)r» « E>» E VA




Artinian property

Recall that we have the following:

Theorem
Category O is Artinian.

The idea of the proof is as follows:

* Locallyn}finite property = surjections of finite sum of

Verma mods to a module in O
® Reduces to check finite len for Verma mdoules
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Artinian property

Recall that we have the following:

Theorem
Category O is Artinian. J

The idea of the proof is as follows:

¢ Locally n-finite property = surjections of finite sum of
Verma mods to a module in O W
* Reduces to check finite length for Verma mdoule /

¢ Any two simple modules L({\) and L@ have non—triv{al

extension only if Ay and A, are linked I.e. I
Chp) G0 * LN

J»U)ﬂ do
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Artinian property

Recall that we have the following:

Theorem
Category O is Artinian.

The idea of the proof is as follows:

¢ Locally n-finite property = surjections of finite sum of
Verma mods to a module in O

e Reduces to check finite length for Verma mdoules

* Any two simple modules ®nd L()\2) have non-trivial
extension only if Ay and X, are linked i.e.

M=w-d:=wa+p)—p

. M [ S ] L
(0= 1 Yo ) R T A Sl
¢ Finite linked conjugacy classes = Finite len. of Verma
mods
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Simple module

e For any simple module L in O, it has a maximal vector by
axiom of O. Such maximal vector generates L and so L is a
highest weight module.
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Simple module

e For any simple module L in O, it has a maximal vector by
axiom of O. Such maximal vector generates L and so L is a
highest weight module.

¢ For such maximal vector v with weight A, define
M(\) — L

Thus any simple module L is the simple quotient L(\) of
some M()\). Hence we obtain a classification of simple
modules in O.

)
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e There is an anit-involution 7 : g — g such that

T(b) =b, T(goz) =0-a

For M € O, define MV as:
MY = Lf‘)\M/\\/
with action given by:

(x.f)(v) = f(7(x).v).

V is a contravariant exact functor

e.g. M(\)" has unigue submodule




Duals in Category O

e There is an anit-involution 7 : g — g such that ,L‘k (e
®) =1, (~(s) ~l
T =0, (T(Ba) = 90—«
* For M € O, define M" as: /__‘S(-’V\ (((7'9
| &)

— @)\M)\

with action given by: i'x M D CZ .
x.f)(v)=f(r
| %m& e
9 va il cq,\f:m
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Duals in Category O

e There is an anit-involution 7 : g — g such that

T(b) = h? T(ga) =0-a

e For M € O, define MV as:
MV = @)\M;\/
with action given by:

(x.f)(v) = f(7(x).v).

e \/ is a contravariant exact functor
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Duals in Category O

e There is an anit-involution 7 : g — g such that

T(b) = []7 T(ga) =0-a

e For M € O, define MV as:
MV = @)\M;\/
with action given by:

(x.f)(v) = f(7(x).v).

* Vis a contravariant exact functor N Vo
e e.g. M()\)" has unique submodule & “&t R
~ ar k" A
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Ill. Homological properties

DA



Some homological properties of Category O

* The ordering on weights is given by:

A< & u—Xe ZZEOQ
aEA
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Some homological properties of Category O

* The ordering on weights is given by:

A< & u—Xe ZZEOQ
aEA

o If A < u, then
Exto(M(p), L(A)) = 0
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Some homological properties of Category O

* The ordering on weights is given by:

A< & u—Xe ZZEOQ
aEA

o If A < u, then
Exto(M(p), L(A)) = 0

o Exto(L()),L(\) =0
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Some homological properties of Category O

The ordering on weights is given by:

A< & u—Xe ZZEOQ
aEA

If A < u, then
Exto(M(p), L(A)) = 0

Exto(L()), L(X)) = 0
The above implies that, for any A, p,

Exth(M(A), M(11)) = 0
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Projective objects

e Recall that an object P is said to be projective if the functor
Homgp(P, .) is right exact.
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Projective objects

e Recall that an object P is said to be projective if the functor
Homgp(P, .) is right exact.

¢ For each simple object L()), 3 a projective cover P(\) for
L(X) i.e. surjection from P(\) to L(\) and there is no proper
projective submodule of P(\) mapping onto L(\)
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Projective objects

e Recall that an object P is said to be projective if the functor
Homgp(P, .) is right exact.

¢ For each simple object L()), 3 a projective cover P(\) for
L(X) i.e. surjection from P(\) to L(\) and there is no proper
projective submodule of P(A) mapping onto L(\)

¢ Any projective object is a finite sum of projective covers
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Projective objects

Recall that an object P is said to be projective if the functor
Homgp(P, .) is right exact.

For each simple object L()\), 3 a projective cover P(\) for
L(X) i.e. surjection from P(\) to L(\) and there is no proper
projective submodule of P(A) mapping onto L(\)

Any projective object is a finite sum of projective covers

Why P()\) exists?
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Examples of projective objects

¢ In sl(2,C) case, we consider simple modules with the
‘infinitesimal character’ 0: L(0) and L(—p)
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Examples of projective objects

¢ In sl(2,C) case, we consider simple modules with the
‘infinitesimal character’ 0: L(0) and L(—p)

¢ The corresponding projective covers have structure:

L(—p)
L(0) .
P(0) L(=p) P(-p) : L((—O,Z)
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Construction of projective objects

e If X satisfies (A + p,a") > 0, then M()) is projective.
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Construction of projective objects

e |If \ satisfies (A + p,a") > 0, then M(])) is projective.

¢ Now for arbitrary weight A, we find a sufficiently large n
such that 4 = X + np is dominant.
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Construction of projective objects

e |If \ satisfies (A + p,a") > 0, then M(])) is projective.
¢ Now for arbitrary weight A, we find a sufficiently large n
such that 4 = X + np is dominant.

® The module M(n) ® L(np) is projective.
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Construction of projective objects

If \ satisfies (A + p, ") > 0, then M()) is projective.
Now for arbitrary weight A, we find a sufficiently large n
such that 4 = X + np is dominant.

The module M(1.) ® L(np) is projective.

There is a general theory to decompose M(u) @ L(np). In
particular, M()\) appears once.
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Construction of projective objects

If \ satisfies (A + p, ") > 0, then M()) is projective.

Now for arbitrary weight A, we find a sufficiently large n
such that 4 = X + np is dominant.

The module M(1.) ® L(np) is projective.

There is a general theory to decompose M(u) @ L(np). In
particular, M()\) appears once.

= We obtain a projective object P(\).
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BGG reciprocity

One important result that relates projective objects, simple
objects and Verma modules is the BGG reciprocity:
e By previous construction, projective object admits a
filtration with successive subquotients are isomorphic to
Verma mdoules. We call standard filtration.
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BGG reciprocity

One important result that relates projective objects, simple
objects and Verma modules is the BGG reciprocity:

e By previous construction, projective object admits a
filtration with successive subquotients are isomorphic to
Verma mdoules. We call standard filtration.

® The number of times that M(x) appears in the filtration of
P(X) is independent of the choice of the filtration.

Kei Yuen Chan Category O



BGG reciprocity

One important result that relates projective objects, simple
objects and Verma modules is the BGG reciprocity:

e By previous construction, projective object admits a
filtration with successive subquotients are isomorphic to
Verma mdoules. We call standard filtration.

® The number of times that M(x) appears in the filtration of
P(X) is independent of the choice of the filtration.

¢ Denote the number by (P(\) : M(w)).

Theorem (BGG reciprocity)
Let \,n € b*. Then

(P(A) = M(p)) = [M(p) : L(M]

Key of proof: (P()\) : M(k)) = Homo(P()), M()¥)
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Projective modules: antidominant case

Following from the projective object M(—p) @ M(\ + p), we
have:

Proposition
Let A be an antidominant weight. Then

(P(A) : M(p)) =1

for any p with w - = X for some w € W.

As a consequence of BGG reciprocity, we als have that

[M(n) : L] = 1.

Indeed, L()\) appears in the submodule M(p). We will come
back in the last lecture.
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